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Background 

•  Collaboration with FNAL on dataflow processing and 
monitoring for workflows (originally for JDEM and LQCD).  
FNAL drove the requirements and are shaping the 
workflow language 
–  Erik Gottschalk 
–  Jim Kowalkowski 
–  Marc Paterno 

•  Work is funded by Phase II SBIR from HEP/DOE 
•  Goals: 

–  Identify key requirements of targeted workflows 
–  Find ways to express them 
–  Leverage Data Distribution Service for implementation 
–  Develop a working system 



Definitions 

•  Actor : a minimal component a workflow (executable taking 
some input and producing output).  Other names: 
participant and module 

•  Composite actor: several actors connected via workflow 
control patterns, that mimics actors 

•  Workflow: Composition can be specified using the patterns 
or some other language (for example, a functional 
language) or graphical representation (a la Kepler).  In and 
outs should be matched.  Technically: a composite actor 

•  Dataflow is a data-driven workflow 
•  Job is associated with some input data (explicitly specified) 

and a particular workflow 
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Common features of scientific 
workflows 

•  Data driven execution coordination 
–  Actions triggered by data availability 
–  Capable to handle “stream of data” 

•  Dynamic 
–  Actual flow depends on the result of the previous step 
–  Resources allocated as needed dynamically and flow is changed 

depending on outcome and number of outputs 
•  Automatic management of transient data 

–  Without the need to explicitly specify locations and names 
–  Selectively archived 

•  Expression for workflow should be editable: text-based 
–  GUI could be useful to set up a simple prototype or show the flow 
–  GUIs do not work well in distributed environments) 
–  Standard notations that are reusable but easy to use 
 



Other requirements  

•  Configurable resource allocation/task scheduling strategies 
•  Tolerance for partial failures 

–  Allow dataflow to continue when less than some % subset 
of data cannot be processed 

•  Recoverability from software/hardware failures (from a single 
dataflow or a set of dataflows) 

•  Provenance – tracking software packages/versions used in a 
dataflow processing 

•  Parameter managements (physics/algorithmic/execution 
parameters) 



There are many types of 
workflows: how to limit? 

•  Choosing particular control patterns 
•  Particular syntax to express the workflow 
•  Compatibility with existing applications 
•  Target run-time 



Dataflow execution can be defined using 
common workflow patterns 

http://www.workflowpatterns.com/patterns/control/ 

–  Sequence 

–  And-split or parallel split (called map for identical threads) 

–  And-merge or synchronization (called reduce for identical threads) 

–  Or-split (exclusive) 

–  Or-merge (exclusive) 

–  Condition/loop 



Functional language syntax for 
describing dataflow 

•  Functional language treat y = f�g as a function definition, 
not assignment.  Thus y is a functor (function that can be 
treated as an object).  Predefined methods (for example, 
map) allow easy creating of composite actors.  FLs allow 
–  Unbounded stream instead of one argument so a 

function gets applied to a list (x, followed by remainder) 
–  Lazy evaluation: happens only when the elements are 

available (a must if you are dealing with streams or in 
dynamic flows when we do not know the number of 
outcomes in a step) 

•  DDSFlow 
–  We adopt the syntax from functional languages for 

describing dataflow processing 



Dataflow processing definitions 
in DDSFlow 

Borrow from FLs, we maps functional definitions to dataflow 
processing definitions 
•  Each function defines an executable that take some input data 

and produce some output data 
y=F(x) 
–  Input/output data are typed, we currently assume they are 

files containing data of specific type in some format 
–  In DDSFlow, we need to associate varuiys parameters with F 

•  A sequence of functions: y=F(G(H(x))) can be written as: 
y=FGH(x) 

•  Map is a special function that hints at possible parallelization: 
y[]=map(F, x[]) 

•  Split/fork merge/join will be inferred through temporarily variables 



More functions under consideration 
(FNAL suggestion) 

•  Map applies a function to every element of a list:  
map (f, [x0, x1, …, xN-1]) = [f (x0), …, f (xN-1)] 
•  Reduce collapses a list into a single value by applying a binary operator * 

cumulatively from left to right:  
reduce (*, [x0, x1, x2, x3])=((x0*x1)*x2)*x3. 
•  Scan accumulates all the intermediate results of reduce operation: 
scan (*, [x0, x1, x2, …]) = [x0, x0*x1, x0*x1)*x2, …]. 
•  Filter selects elements of the list for which a function applied returns true: 
filter (f, [x0, x1, …, xN-1] )= [xi, …] for all i for which f (xi) = true. 
•  Zip merges two lists into one with elements that are tuples from the 

original lists:  
zip [a,b,c...] [z,y,x...] = [(a,z), (b,y), (c,x)... ]  
•  Unzip takes a list of tuples, and breaks them apart into a tuple of lists  
unzip [(a,b),(c,d)] = ([a,c], [b,d])  
•  Cycle is the same as map but until some condition is true. 



A common dataflow processing scenario 
– parallel pipeline using map/reduce 
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map 

is: spectrum: int[] 
spectra: spectrum[] images: image[] 

os: image: int[] 

os = ss_combine(map ss_gen (ss_split is)) 



How such a simple parallel map/
reduce dataflow look like 

ss_split :: Spectrum -> [Spectrum]  
ss_generate :: Spectrum -> Image  
ss_combine :: [Image] -> Image  
spectra = ss_split input_spectrum  
images = map ss_generate spectra  
result = ss_combine images  
OR  
my_workflow :: Spectrum -> Image  
my_workflow is = ss_combine (map ss_generate (ss_split is))  



Functional definitions to DDSFlow 
execution entity mappings:  

Simple actors 
•  Internally, DDSFlow uses XML documents to describe dataflow 
•  A simple function is mapped to an actor 

–  Maps to an external  
executable 

–  Has predefined input/ 
output types 

–  Can be associated with 
a configuration file  

–  Work as an insertion point 
for provenance and Q/A 

<actor>!
      <id>foo</id>!
      <exec>foo.sh</exec>!
      <inport>!
        <type>Type1</type>!
      </inport>!
      <outport>!
        <type>[Type2, Type3]</type>!
      </outport>!
      <config>foo.cfg</config>!
  </actor>!



Composite actors 
•  Sequential actors 

–  Represent a series of  
actors into one actor 

–  Can refer to other  
composite actors 

–  Define a sequential  
firing rules 

•  Map actors 
–  Can refer to a  

composite actor 
–  Define a possible dynamic 

parallel firing rules 
–  Define a synch point at the end 

<compositeActor>!
  <type> sequence </type>!
  <id> denoiser3 </id>!
  <actors> denoiser1, denoiser2 </actors>!
</compositeActor>  !

<compositeActor>!
  <type>map</type>!
   <id>apply_filter</id>!
   <actor>filter_seq</actor> !
</compositeActor>!



Forming dataflow processing 
definitions 

•  Reduce is like a regular actor 
–  Types must match 

•  Yet to define 
–  Split defines a firing  

rule to trigger  
concurrent actors to fire 

–  Merge defines a synch point 

•  Dataflow definition invokes a actor (usually a 
composite one) 
–  Types can be inferred from the actors 

<dataflow> // Not sure about this?!
  <actorId> fullworkflow </actorId>!
    <indata> inputfilenames </indata>!
    <outdata> outputfilenames </outdata> !
</dataflow> !



Underlying assumptions 

•  There are many working processes available for the 
workflow 

•  A process can be specialized (do just one type of action) 
or not (agreeing to whatever should be done next) 

•  Loose coupling: action triggered upon files generation 
manifested by events 

•  Detect failed nodes/processes 
•  Elimination of a single point of failure calls for a 

architecture with distributed dataflow processing 
conductors  



Pipeliner 

DDSFlow provides runtime 
environment to coordinate and 

schedule actor executions 
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Details in dataflow processing 

•  Internally, a task/ticket represents the execution of a simple actor 
•  Incoming data trigger a dataflow (using pipeliner) to submit a job 

representing the overall dataflow for the piece of data 
•  A composite actor often is translated into a new job.  The  

composite actor will wait for the job to finish before firing the next 
task(s) 

•  Jobs are independent to one another when it comes to 
scheduling (we may need more comprehensive scheduling 
strategies later) 

•  We do not cover stage-in/out of data so far 
–  Perhaps can be done via actors? 



Execution of sequential actors 
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DDSFlow leverages  
Data Distribution Service (DDS) 

•  OMG standard for real time publish-subscribe systems 
•  Free implementations are available and good 
•  Rich quality-of-service features (resource and time aware, 

time sequences): to get just want to you want, how much you 
want and when you want 

•  Works over WAN 
•  Security support 
•  C++ and Java binding (we are working on a Python binding) 
•  Tested in DOD applications (military ships, air traffic control) 
•  Topics – events with data (can be used to exchange data in 

memory, we tried FITS data) 



DDS decouples participants and 
delivers information of interest 



Key features in DDSFlow enabled 
via DDS 

–  Dynamic workflows 
–  Pub/sub model enables us to form federations (many 

clusters on LAN or WAN) easily 
•  Other than the ability to pool more resources 

–  In-memory data exchange (avoiding files) 
–  Detect processes that have stopped working in a pre-

determined time (single node/worker failure) 
–  Support for auto-snapshot of ticket states  
–  More resilient to faults 
–  Enable restart of interrupted dataflow processes (cluster/

framework failure) 
–  Streamlined collection of provenance (through global 

information space), QA, and system monitoring data vis 
DDS topics 



Leveraging various run-time 
environments 

•  Currently targeting a single cluster 
–  Head-node runs the ticketing server 
–  Worker nodes runs the worker daemon 
–  Assuming executables are available for all workers 

•  Can easily extend to support federation of clusters 
–  Ticketing servers need to be aware of other server, 

this can easily implemented with DDS 
•  Grid environment? 

–  Deploy our services using OSG/Teragrid software 
stack 



DDSFlow current status 

•  Support execution of sequences and map/reduce’s 
•  Support for dynamic map (variable number of parallel 

elements) 
•  Depending on an internal XML-based actor definitions 



DDSFlow plan 
•  Extend implementation to more control functions 

and recursive maps (now all ~works for map-reduce 
systems) 

•  More support for configuration files 
•  Better error and status information management 
•  Support for provenance 
•  Translate functional dataflow definitions into XML 
•  Intervention based on data quality or other status 

events 
•  Demonstrate that we can implement given examples 
•  Type verifications 



PyDDS: bringing Python 
programmers to DDS 

•  Implement prototype Python mappings for DDS which 
would allow Python applications to participate in DDS 
data exchanges easily 

•  Currently, no standardized DDS Python mapping 
available and for developers to use DDS in their Python 
applications 

•  Allow Python developers to interact with DDS data 
spaces directly 
–  Eliminate the need to generate topic-specific Python 

wrappers of C/C++ mapping codes 



PyDDS wrappings 

Domain Participant 

Netwotk	


Subscriber Publisher 

Writer Reader 

TopicWriter TopicReader 

pyDDS Services 

Python Application 



Typical development steps  
using PyDDS 

•  Import pydds in Python code 
•  Dynamically generate topic specific DDS objects using 

services provided by pydds in python 
•  Interact with DDS subsystem directly thru pydds and the 

generated topic-specific objects 
•  Benefits: 

–  No need to use tools outside of Python 
–  No need to re-generate Python bridges when IDL 

changes 
–  Natural Python development flow 



Example:  
joining a data domain/partition 

# A one-stop interface into the pydds global factory methods 
import pydds 

  

# We should allow users to define their dataspace/runtime and pass it in as  

# an argument to various operations that need it.  (See later) 

myDataspace = pydds.connect_dataspace(“Domain name”, “Partition name”) 

  

# Perhaps pydds can hold a default dataspace object.  If some operations  

# that need to know a dataspace object but are not provided one, they will  

# fish out the default (nameless, partition less) dataspace and use it instead. 

  

# Likewise, a Dataspace object should contains some  

# default subscriber/publisher objects with default QoS policies. 

 



Example:  
manipulating QoS policy sets 

myQoS = pydds.create_qos() 
myQoS.set_reliable (3000000) 

myQoS.set_transient() 

myQoS.set_keep_last (3) 

 



Example:  
create topics, readers, writers 

# Creating/Finding a topic in the data space 
# Last argument specifies the URI of the topic structure 

helloTopic = pydds.create_topic  
   (“TopicName”,  

   myDataspace,  

   myQoS,  

   “file://HelloWorld.idl#HelloTopic”) 

 

# Creating topic-specific reader/writer: 

helloReader = helloTopic.create_reader (readerQoS) 

helloWriter = helloTopic.create_writer (writerQoS) 

 



Example:  
writing and reading DDS samples 

# creating a sample 
helloSampl = helloTopic.create_sample 

  (message=”John Smith”, repeat=3) 
 

# publishing the sample 

status = helloWriter (helloSample) 

  

# Simple read is straightforward 

[ samples, infos ] = hellowReader.read() 

sys.stdout.write(samples[0].topicFieldOfInterest…) 

  

# Will look at Twistd and/or Trellis to design the Listener  

# callback  



Design and implementation status 

•  Working with OpenSplice Community Edition version 
5.4.1 

•  Currently implementing the core OpenSplice 
communication layer 

•  We are creating a thin wrapper layer on top of the 
OpenSplice C APIs 
–  OpenSplice’s C++ classes are designed for their 

topic-specific C++ mappings 
•  Many are derived from other classes, have multiple layers of 

inheritance and multiple inheritances 
•  All the levels of inheritance need to be taken care of in the 

bindings, and including all the classes, there are about 150 
classes for which Python bindings are needed 

–  Using Boost.Python to minimize dependencies to 
external software 



PyDDS next steps 

•  Develop lightweight C++ 
wrapper class for 
Boost.python 

•  Develop pyDDS API - 
Pything bridge for 
OpenSplice 
communication API in 
pyDDS 

•  Implement example 
Python applications with 
hand-crafted marshaling 
and demarshaling 

•  Define API for 
dynamic code 
generation of Python 
mappings 

•  Implement such tool  


